会话问题生成(CQG)是机器通过对话等人类(例如交互式阅读理解)的重要任务。与传统的单转交问题(SQG)相比,CQG更具挑战性的意义,即生成的问题不仅需要有意义,而且要与发生的对话历史保持一致。虽然先前的研究主要集中于如何建模对话的流量和对齐,但迄今为止,尚无对模型必需部分和历史的部分进行全面的研究。我们认为,缩短上下文和历史是至关重要的,因为它可以帮助该模型对对话的一致性进行更多优化。为此,我们提出了一个两阶段CQG框架COHS-CQG,该框架采用COHS模块来缩短输入的上下文和历史记录。特别是,COHS选择连续的句子,并根据其相关性得分通过顶级P策略转弯。我们的模型在答案感和答案环境中都可以在COQA上实现最先进的表演。
translated by 谷歌翻译
只有在模型在大规模的多语言环境中培训的情况下,才有可能在无监督的机器翻译(UMT)上进行无监督的机器翻译(UMT),这意味着有能力的无监督翻译(例如尼泊尔或辛哈拉)的胜任的不受监督的翻译,例如尼泊尔或辛哈拉语。与高资源对应物混合。尽管如此,尽管高资源语言极大地帮助启动了目标低资源翻译任务,但它们之间的语言差异可能会阻碍他们的进一步改进。在这项工作中,我们提出了一个简单的完善程序,以将语言与预先训练的多语言UMT模型相关联,以仅关注目标低资源任务。我们的方法在完全无监督的翻译任务中实现了最新的尼泊尔,僧伽罗,古吉拉特语,拉脱维亚,爱沙尼亚和哈萨克的最新技术,分别为3.5、3.3、3.3、4.1、4.2、4.2和3.3。我们的代码库可从https://github.com/nxphi47/refine_unsup_multlingual_mt获得
translated by 谷歌翻译
Building systems that achieve a deeper understanding of language is one of the central goals of natural language processing (NLP). Towards this goal, recent works have begun to train language models on narrative datasets which require extracting the most critical information by integrating across long contexts. However, it is still an open question whether these models are learning a deeper understanding of the text, or if the models are simply learning a heuristic to complete the task. This work investigates this further by turning to the one language processing system that truly understands complex language: the human brain. We show that training language models for deeper narrative understanding results in richer representations that have improved alignment to human brain activity. We further find that the improvements in brain alignment are larger for character names than for other discourse features, which indicates that these models are learning important narrative elements. Taken together, these results suggest that this type of training can indeed lead to deeper language understanding. These findings have consequences both for cognitive neuroscience by revealing some of the significant factors behind brain-NLP alignment, and for NLP by highlighting that understanding of long-range context can be improved beyond language modeling.
translated by 谷歌翻译
Real-time semantic segmentation has played an important role in intelligent vehicle scenarios. Recently, numerous networks have incorporated information from multi-size receptive fields to facilitate feature extraction in real-time semantic segmentation tasks. However, these methods preferentially adopt massive receptive fields to elicit more contextual information, which may result in inefficient feature extraction. We believe that the elaborated receptive fields are crucial, considering the demand for efficient feature extraction in real-time tasks. Therefore, we propose an effective and efficient architecture termed Dilation-wise Residual segmentation (DWRSeg), which possesses different sets of receptive field sizes within different stages. The architecture involves (i) a Dilation-wise Residual (DWR) module for extracting features based on different scales of receptive fields in the high level of the network; (ii) a Simple Inverted Residual (SIR) module that uses an inverted bottleneck structure to extract features from the low stage; and (iii) a simple fully convolutional network (FCN)-like decoder for aggregating multiscale feature maps to generate the prediction. Extensive experiments on the Cityscapes and CamVid datasets demonstrate the effectiveness of our method by achieving a state-of-the-art trade-off between accuracy and inference speed, in addition to being lighter weight. Without using pretraining or resorting to any training trick, we achieve 72.7% mIoU on the Cityscapes test set at a speed of 319.5 FPS on one NVIDIA GeForce GTX 1080 Ti card, which is significantly faster than existing methods. The code and trained models are publicly available.
translated by 谷歌翻译
This paper is about an extraordinary phenomenon. Suppose we don't use any low-light images as training data, can we enhance a low-light image by deep learning? Obviously, current methods cannot do this, since deep neural networks require to train their scads of parameters using copious amounts of training data, especially task-related data. In this paper, we show that in the context of fundamental deep learning, it is possible to enhance a low-light image without any task-related training data. Technically, we propose a new, magical, effective and efficient method, termed \underline{Noi}se \underline{SE}lf-\underline{R}egression (NoiSER), which learns a gray-world mapping from Gaussian distribution for low-light image enhancement (LLIE). Specifically, a self-regression model is built as a carrier to learn a gray-world mapping during training, which is performed by simply iteratively feeding random noise. During inference, a low-light image is directly fed into the learned mapping to yield a normal-light one. Extensive experiments show that our NoiSER is highly competitive to current task-related data based LLIE models in terms of quantitative and visual results, while outperforming them in terms of the number of parameters, training time and inference speed. With only about 1K parameters, NoiSER realizes about 1 minute for training and 1.2 ms for inference with 600$\times$400 resolution on RTX 2080 Ti. Besides, NoiSER has an inborn automated exposure suppression capability and can automatically adjust too bright or too dark, without additional manipulations.
translated by 谷歌翻译
Arbitrary-oriented object detection is a fundamental task in visual scenes involving aerial images and scene text. In this report, we present PP-YOLOE-R, an efficient anchor-free rotated object detector based on PP-YOLOE. We introduce a bag of useful tricks in PP-YOLOE-R to improve detection precision with marginal extra parameters and computational cost. As a result, PP-YOLOE-R-l and PP-YOLOE-R-x achieve 78.14 and 78.28 mAP respectively on DOTA 1.0 dataset with single-scale training and testing, which outperform almost all other rotated object detectors. With multi-scale training and testing, PP-YOLOE-R-l and PP-YOLOE-R-x further improve the detection precision to 80.02 and 80.73 mAP. In this case, PP-YOLOE-R-x surpasses all anchor-free methods and demonstrates competitive performance to state-of-the-art anchor-based two-stage models. Further, PP-YOLOE-R is deployment friendly and PP-YOLOE-R-s/m/l/x can reach 69.8/55.1/48.3/37.1 FPS respectively on RTX 2080 Ti with TensorRT and FP16-precision. Source code and pre-trained models are available at https://github.com/PaddlePaddle/PaddleDetection, which is powered by https://github.com/PaddlePaddle/Paddle.
translated by 谷歌翻译
Compared with model-based control and optimization methods, reinforcement learning (RL) provides a data-driven, learning-based framework to formulate and solve sequential decision-making problems. The RL framework has become promising due to largely improved data availability and computing power in the aviation industry. Many aviation-based applications can be formulated or treated as sequential decision-making problems. Some of them are offline planning problems, while others need to be solved online and are safety-critical. In this survey paper, we first describe standard RL formulations and solutions. Then we survey the landscape of existing RL-based applications in aviation. Finally, we summarize the paper, identify the technical gaps, and suggest future directions of RL research in aviation.
translated by 谷歌翻译
With the demand for standardized large-scale livestock farming and the development of artificial intelligence technology, a lot of research in area of animal face recognition were carried on pigs, cattle, sheep and other livestock. Face recognition consists of three sub-task: face detection, face normalizing and face identification. Most of animal face recognition study focuses on face detection and face identification. Animals are often uncooperative when taking photos, so the collected animal face images are often in arbitrary directions. The use of non-standard images may significantly reduce the performance of face recognition system. However, there is no study on normalizing of the animal face image with arbitrary directions. In this study, we developed a light-weight angle detection and region-based convolutional network (LAD-RCNN) containing a new rotation angle coding method that can detect the rotation angle and the location of animal face in one-stage. LAD-RCNN has a frame rate of 72.74 FPS (including all steps) on a single GeForce RTX 2080 Ti GPU. LAD-RCNN has been evaluated on multiple dataset including goat dataset and gaot infrared image. Evaluation result show that the AP of face detection was more than 95% and the deviation between the detected rotation angle and the ground-truth rotation angle were less than 0.036 (i.e. 6.48{\deg}) on all the test dataset. This shows that LAD-RCNN has excellent performance on livestock face and its direction detection, and therefore it is very suitable for livestock face detection and Normalizing. Code is available at https://github.com/SheepBreedingLab-HZAU/LAD-RCNN/
translated by 谷歌翻译
在深度学习中,变压器一直是必不可少的主食。但是,对于现实生活中的应用程序,由于模型的巨大参数和操作,部署有效的变压器非常具有挑战性。为了减轻这种负担,利用稀疏是加速变压器的有效方法。新出现的Ampere GPU利用2:4的稀疏模式来实现模型加速度,而在部署模型时,它几乎无法满足各种算法和硬件约束。相比之下,我们提出了一个算法 - 铁软件合作的框架,以灵活有效地加速变压器,通过使用一般的N:M稀疏模式。 (1)从算法的角度来看,我们提出了一种稀疏性遗传机制以及一种遗传的动态修剪(IDP)方法,以迅速获得一系列N:M稀疏候选变压器。进一步提出了模型压缩方案,以显着减少部署的存储需求。 (2)从硬件的角度来看,我们提出了一种灵活,有效的硬件体系结构,即STA,以在部署N:M稀疏变压器时达到显着加速。 STA不仅具有具有较高计算效率的稀疏密度和致密矩阵乘法的计算引擎,而且还具有可扩展的软模块,从而消除了中级外芯片外数据通信的延迟。实验结果表明,与其他使用IDP生成的其他方法相比,n:m稀疏变压器的准确性平均提高了6.7%。此外,与Intel I9-9900X和NVIDIA RTX 2080 TI相比,STA可以达到14.47倍和11.33倍的速度,并且比最先进的基于FPGA的加速器对变形金刚的最先进的推断速度可以快2.00-19.47倍。
translated by 谷歌翻译
实时病毒基因组检测,分类学分类和系统发育分析对于有效跟踪和控制病毒大流传学(例如COVID-19)至关重要。但是,空前且仍在增加的病毒基因组数据产生了计算瓶颈,从而有效防止了实时大流行跟踪。我们试图通过修改和应用视觉变压器(最近开发的用于图像识别的神经网络模型)来减轻这种瓶颈,以将病毒基因组(例如SARS-COV-2)的分类学分类和放置。我们的解决方案Covit将新获取的样品放在SARS-COV-2谱系的树上。 Covit返回的两个潜在位置之一是真实的位置,概率为99.0%。在Covit产生的五个潜在位置中找到正确位置的可能性为99.8%。在NVIDIAS GEFORCE RTX 2080 TI GPU上运行的每个基因组的放置时间为1.45ms。我们通过github:https://github.com/zuherjahshan/covit向研究社区提供Covit。
translated by 谷歌翻译